2-Way Simultaneous Doppler and Ranging for Multiple Spacecraft at Mars

Kar-Ming Cheung, Dariush Divsalar, Scott Bryant, Charles Lee*

March 3 - 10, 2018

IEEE Aerospace Conference 2018
Big Sky, Montana

^{*}Jet Propulsion Laboratory, California Institute of Technology

Outline of Talk

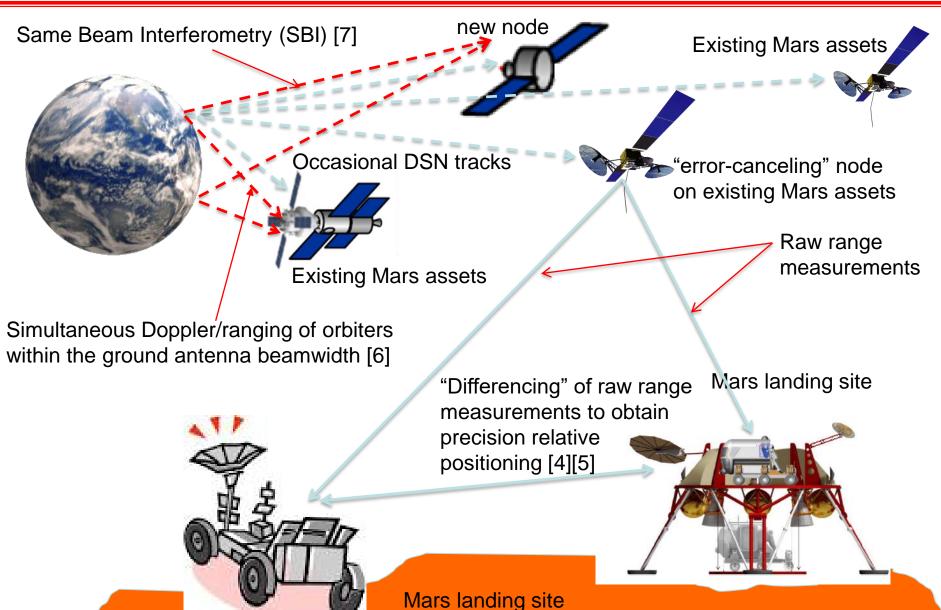
PART 1 - BACKGROUND AND SYSTEM CONCEPT

- OVERVIEW OF THE PROPOSED MARS REGIONAL NAVIGATION SATELLITE SYSTEM (MRNSS)
- > IMPORTANCE OF ACCURATE NAVIGATION SATELLITES ORBIT DETERMINATION (OD)
- CHALLENGES OF DEEP SPACE TRACKING/NAVIGATION FOR MULTIPLE SPACECRAFT

PART 2 - SIMULTANEOUS 2-WAY DOPPLER/RANGING

- > SYSTEM APPROACH: A COLLABORATIVE FLIGHT-GROUND ARCHITECTURE
- > DIFFERENT DOPPLER AND DOPPLER RATE OF MARS ASSETS
- > SIGNAL STRUCTURE: RELATIONSHIP BETWEEN CARRIER FREQUENCY AND RANGE CLOCK
- > FLIGHT RADIO UPGRADE: SMART SWEEPING ALGORITHM
- GROUND PROCESSING: MULTIPLE COPIES OF RECEIVER RANGING PROCESSORS (RRP'S)

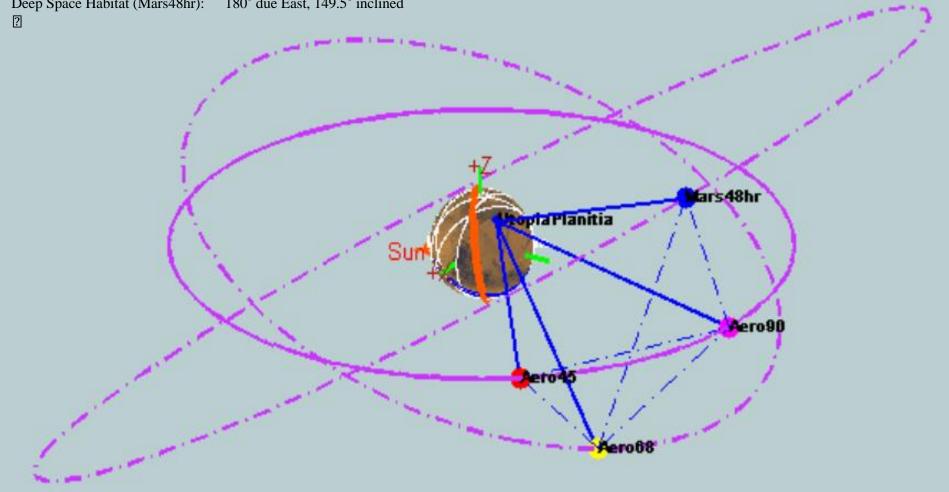
Part 1: Background and System Concept



Proposed Mars Regional Navigation Satellite System (1)

- We have been working on the system concept of a low-cost low-maintenance Mars Regional Navigation Satellite System (MRNSS) [1] with the following key principles
 - Capitalize on the build-up of orbiting and surface infrastructures on Mars during the human Mars exploration era [2][3][4]
 - Leverage on a new geometric trilateration method that simultaneously performs absolute positioning and relative positioning [5][6]
 - Introduce the concept of using relative positioning that provides regional navigation services in the vicinity of a human Mars landing site (~100 km), thereby relieving the stringent requirements on orbit determination (OD) of Mars navigation satellites

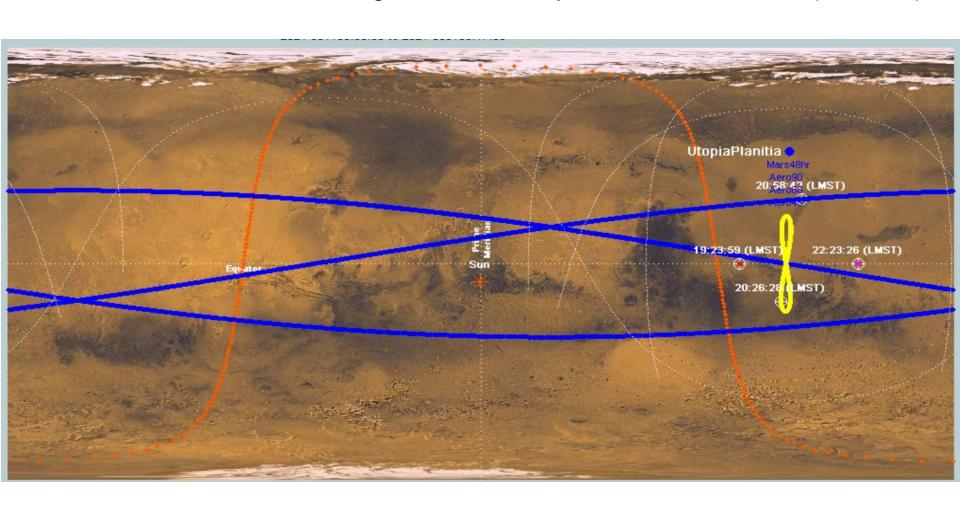
Proposed Mars Regional Navigation Satellite System (2)


Proposed Mars Regional Navigation Satellite System (3)

Orbits of the Notional Mars Navigation Nodes (3-D View)

Utopia Planitia: 182.5° due East, 46.7° due North

Aerostationary orbiter 1 (Areo45): 162.5° due East Aerostationary orbiter 2 (Areo90): 207.5° due East


Aerosynchronous orbiter (Areo68): 180° due East and 20° inclined Deep Space Habitat (Mars48hr): 180° due East, 149.5° inclined

Proposed Mars Regional Navigation Satellite System (4)

Orbits of the Notional Mars Navigation Nodes Projected on Mars Surface (2-D View)

Importance of Accurate Navigation Satellites **Orbit Determination**

Our Proposed 2		GPS\satellite\Position\Tropr\square							
Scheme		0m2	0.5m2	1m2	2m2	5m2	10m2	30m2	35m2
Pseudo-rangeଅ errorଅ	01cm2	0.002	3273.852	6547.692	13095.392	32738.482	65476.992	196431.32	229169.92
	0.10km2	11.272	3273.702	6547.542	13095.232	32738.322	65476.822	196431.12	229169.72
	0.25@tm2	28.192	3273.562	6547.352	13095.012	32738.082	65476.582	196430.92	229169.52
	0.50@m2	56.372	3273.512	6547.122	13094.692	32737.71?	65476.192	196430.52	229169.12
	1.00km2	112.74?	3274.152	6547.032	13094.242	32737.042	65475.452	196429.72	229168.32
	2.00@tm2	225.482	3278.352	6548.302	13094.062	32735.982	€ 5474.102	196428.12	229166.72
	5.00@m2	563.712	3313.952	6563.762	13099.34	32735.152	65471.23	196423.92	229162.42

Table 1. 1530 Absolute 1 ocalization 1 Tror 1 Standard 1 deviation 1 Tror 2 Transport 1 Tror 2 Transport 1 Tror 3 Tror

Our Proposed 2 GPSBatellitePositionError2 Scheme2 0m2 0.5m2 35m2 1m2 2m2 5m2 **∖** 10m⊡ 30m2 956.042 **3**19.042 01cm2 14.432 21.572 35.072 65.442 160.062 1115.332 Pseudo-range≀ 21.59? 26.822 67.272 160.752 319.322 956.052 1115.32 0.10@m2 38.472 42.77? 45.582 76.582 164.762 321.27 956.582 1115.752 0.25@m2 53.222 328.482 1117.632 83.332 103.452 178.672 958.822 0.50@m2 81.892 87.692 968.342 173.62 356.412 1125.722 1.00km2 161.952 162.622 164.842 226.382 452.052 2.00@m 323.002 323.282 324.342 1006.71 1158.712 328.78 359.122 806.952 806.992 807.342 808.992 821.362 865.362 1246.302 1371.592

Table 2. 1530 Relative I ocalization I rror I tandard I deviation I com I to filthe I New 15 cheme. 121 Distance®etween@eference@nd@arget卧2100@km.图sigma卧2100@m.3Delta卧2100@m.2

Our Proposed 2 GPSSatelliteFositionError Scheme 2 0m2 0.5m2 1m2 2m2 5m2 10m2 **3**0′m⊡ 35m2 0.142 1.592 3.182 6.352 15.872 **3**1.73² 95.202 111.072 012tm2 Pseudo-range² 0.10km2 16.032 16.102 16.322 17.20 22.472 35.45₂/ 96.422 112.102 0.25@m2 40.082 40.102 40.182 40.53 42.992 50.932 103.022 117.792 85.992 81.592 123.992 136.482 0.50km2 80.152 80.162 80.192 80.36 163.192 1.00@m2 160.312 160.302 160.322 160.393 160.972 185.832 194.342 **3**21.95² 2.00@m2 320.622 320.612 320.612 320.63 320.892 333.772 338.522 5.00km? 801.542 801.532 801.522 801.522 801.582 **/**801.93² 806.472 808.382

Table 3. 3. Relative 10 ocalization 12 ror 13 tandard 13 devia 14 on 10 cm 12 of 12 no 12 or 12 Distance動etween即eference園nd即arget學200km.動gma學200km.即elta學200km.即

200 - 400 foldsimprovement in RMSE accuracy

Sigma: media delay Delta: clock bias

5.00@m2

Challenges of Deep Space Tracking/Navigation for Multiple Spacecraft

- Traditional deep space tracking techniques include Doppler, ranging, and delta-DOR
- 2-Way Doppler/ranging requires tight coordination between ground and flight (Doppler compensation), and one ground station tracking one spacecraft (1-to-1)
- Delta-DOR is 1-way, but requires two ground station tracking one spacecraft (2-to-1)
- Tracking requires tying up an antenna for a long time [7]. When number of missions increase, and for missions with multiple spacecraft, there might not be enough DSN antenna assets to meet missions' communications and tracking needs
- There is a desire to extend the current deep space tracking techniques to support multiple spacecraft in a beam to improve the antenna usage efficiency
- Some interesting characteristics:
 - 2-way Doppler and ranging requires tight collaboration between ground and spacecraft.
 When multiple spacecraft are involved, overall system can be brittle
 - Delta-DOR is one-way, and depends on delays of signal arrival. Overall system is more robust

Part 2: 2-Way Simultaneous Doppler/Ranging

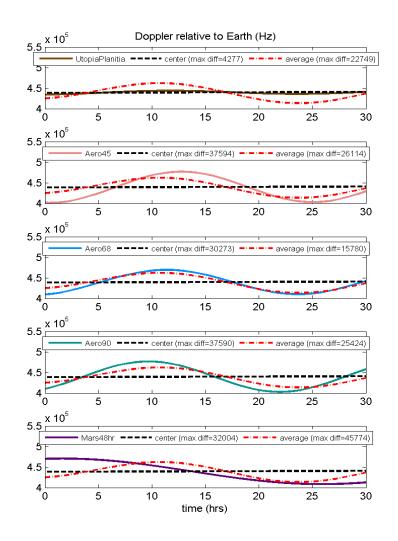
Simultaneous Doppler/Ranging: System Approach A Collaborative Flight-Ground Architecture (1)

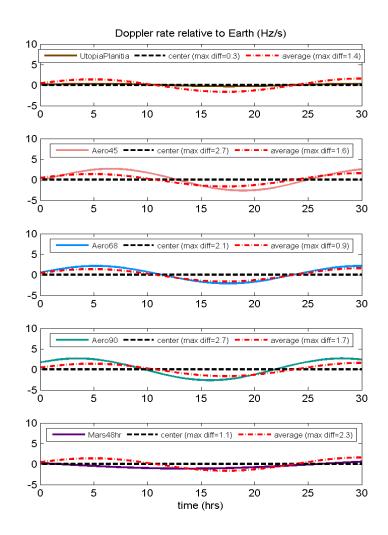
- Assume Doppler/ranging in X-band, which supports low rate commands/telemetry
- The Mars orbiters all lie within the same beamwidth of a DSN 34-m BWG antenna
- For N orbiters, the downlinks operate in N allocated frequency bands separated by N-1 guard bands to prevent interference
- Collaborative flight-ground architecture:
 - The N orbiters time-share a single uplink; commands differentiated by SCID
 - The ground "Doppler-compensates" the uplink signal in either way:
 - With respective to the Mars center
 - With respective to the average (centroid) of Doppler's of N orbiters

Guard bands must be wide enough to accommodate the residual Doppler. Preliminary simulations: residual Doppler and Doppler rate are bounded by 45 KHz & 2.6 Hz/s

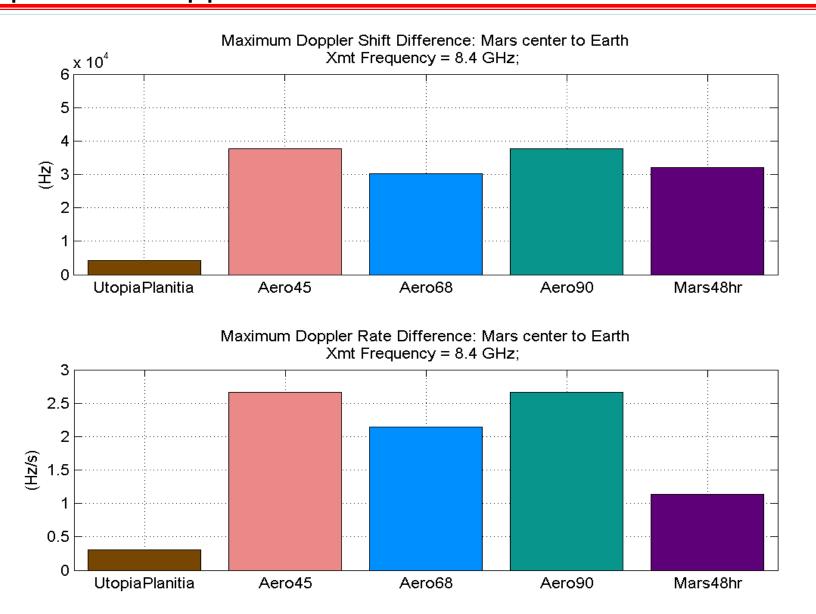
Simultaneous Doppler/Ranging: System Approach A Collaborative Flight-Ground Architecture (2)

• Flight radio upgrades:

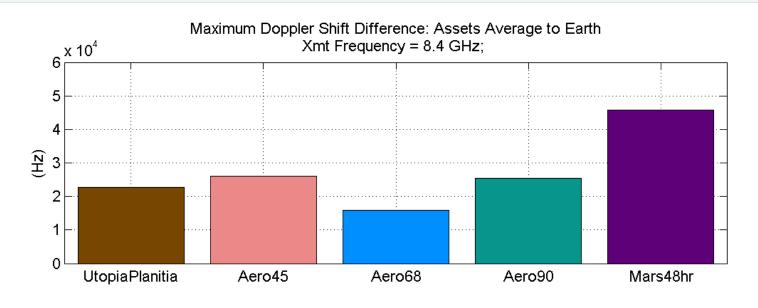

- A different turn-around-ratio for each spacecraft so the same uplink would be coherently "turned-around" to modulate the telemetry and ranging signals on a different allocated downlink frequency
- A well-designed tracking loop that can sweep, acquire, and track the unknown uplink carrier phase and high residual Doppler frequency

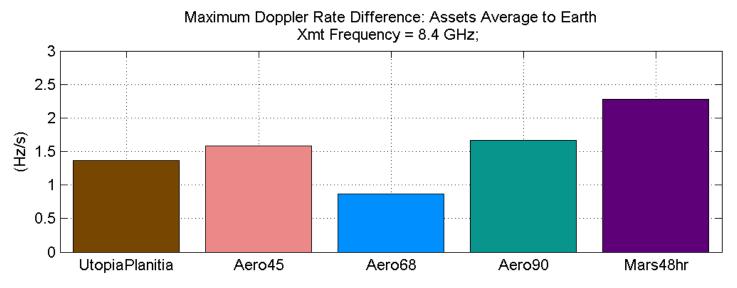

Ground upgrades:

- One ground antenna receives all N downlink signals with different carrier frequencies via Multiple Spacecraft Per Aperture (MSPA)
- Each signal stream is extracted via band-pass filtering and down-converted to IF for telemetry, Doppler, and range processing



Simultaneous Doppler/Ranging Doppler and Doppler Rate Profiles





Simultaneous Doppler/Ranging pler and Doppler Rate Residuals for Mars Center Strategy

Simultaneous Doppler/Ranging oppler and Doppler Rate Residuals for Centroid Strategy

Simultaneous Doppler/Ranging Signal Structure (1)

Transmitted uplink signal

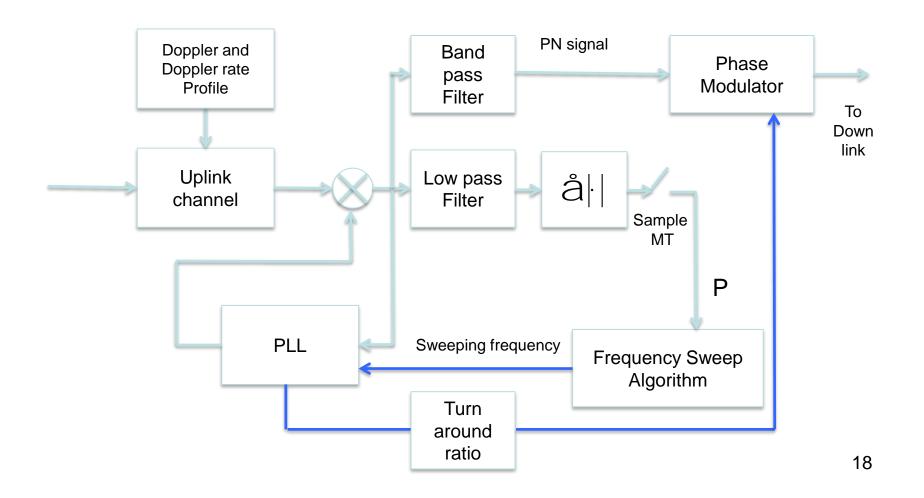
$$S_T(t) = \sqrt{2} \sin[2\rho \, \partial_U f_T t + q \, p_c(t) \sin(2\rho \frac{R_c}{2} t)]$$

- f_T is the uplink carrier frequency, α_u is a function of time that accounts for the Doppler effect on the uplink, $P_c(t)$ is the ranging signal taking values of ∓ 1 with chip rate R_c , and θ is ranging modulation index
- The range clock is $\frac{R_c}{2} = \alpha_u \beta f_T$, where $b = 2^{-7-C}$ for S-band uplink $b = \frac{221}{749} 2^{-7-C}$ for X-band uplink

C is an integer and is a ranging parameter

- The range clock also experience a Doppler effect and appears at the spacecraft with a frequency $\alpha_u\beta f_T$
- The uplink signal after filtering can be represented as

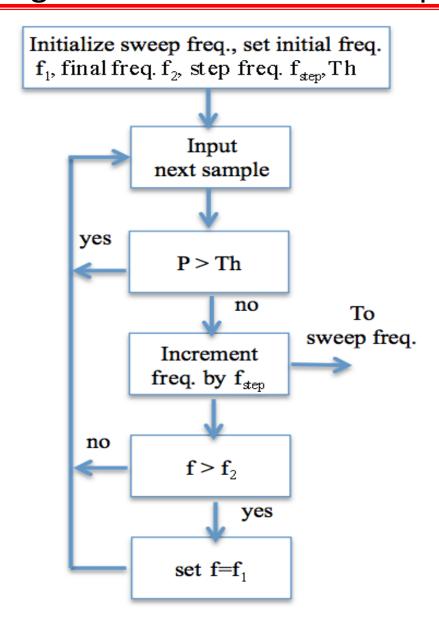
$$S_{T}(t) = \sqrt{2} J_{0}(q) \sin[2\rho a_{U}f_{T}t] + \sqrt{2} \cos[2\rho a_{U}f_{T}t]2J_{1}(q)p_{c}(t) \sin(2\rho \frac{R_{c}}{2}t)$$
(1)


Simultaneous Doppler/Ranging Signal Structure (2)

- The PLL provide $\sqrt{2}\cos[2\pi\alpha_u f_T t]$ with any additional non-compensated residual Doppler and Doppler rate. This carrier is used to down convert the 2nd term to baseband to get the ranging signal
- The ranging signal is modulated onto the downlink carrier $\sqrt{2}\sin[2\rho\,a_{_U}a_{_D}G\,f_{_T}t]$ where G is the turn-around ratio and α_D is a function of time that accounts for the Doppler effect on the downlink
- Similarly the range clock is $\frac{R_c}{2} = \alpha_u \alpha_D \beta f_T$
- When in-lock the Ground PLL provide $\sqrt{2}\cos[2\pi\alpha_u\alpha_D Gf_T t]$. This carrier is used to down convert the received signal to baseband to get the ranging signal
- The ratio of the range clock and the received carrier frequency is β/G
- "Doppler-rate aiding" [9] uses accurate measurements of the downlink carrier frequency provided by the PLL and multiplied with β /G to give an accurate estimate of the received range clock frequency the rate of change of the range clock phase
- A local model of the received ranging signal is constructed, which has the same rate of change of phase as the received range clock. This Doppler-shifted reference is used to sample the Doppler-shifted ranging signal, producing un-shifted samples for accurate measurements of range

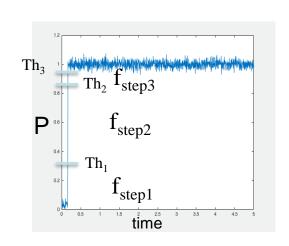
Simultaneous Doppler/Ranging: Spacecraft Radio Schematic

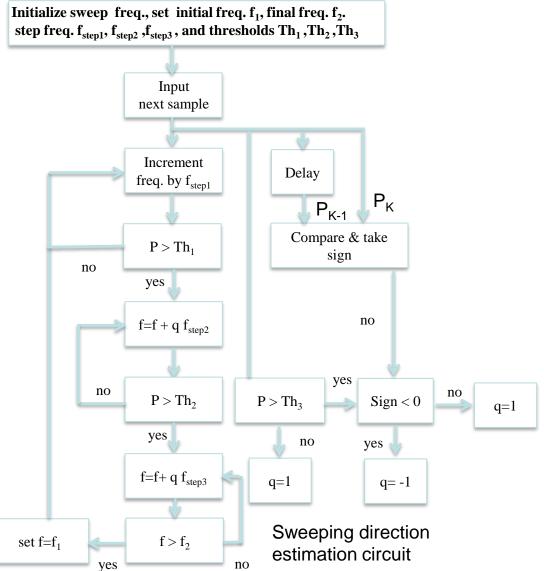
Complex signal representation



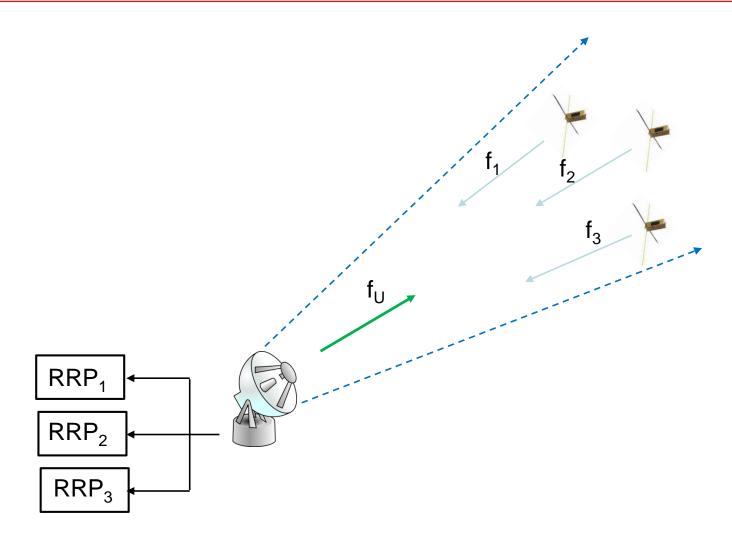
Simultaneous Doppler/Ranging: Smart PLL Tracking

- The first term of (1) is residual carrier and can be tracked with a PLL with a controlled sweeping frequency
- Due to high residual Doppler, a smart sweeping algorithm is needed
 - Other sweeping approaches are FFT and Doppler predicts
- The Electra sweeping approach is static and memoryless (no prior knowledge of past sample)
 - Use constant frequency step f_{step} , move from f_1 (min) to f_2 (max) to compare threshold, and repeat
- The smart sweeping algorithm has the following characteristics:
 - Use multiple thresholds (3), and change f_{step} when a threshold is reached
 - Compare current parameter P_K with P_{K-1} in prior frequency interval to determine the sweeping direction increase or decrease the sweeping frequency




Simultaneous Doppler/Ranging: Current Straight-Forward Electra Sweeping Algorithm

Simultaneous Doppler/Ranging: Flight Radio Smart Frequency Sweeping Algorithm



Dynamic sweeping circuit

Simultaneous Doppler/Ranging: High-Level Ground System Schematic and Data Flow

RRP – Receiver Ranging Processor [7]

References

- [1] K.Cheung, C. Lee, "In-Situ Navigation and Timing Services for a Human Mars Landing Site Part 1: System Concept," September 2017, 68th International Astronautical Congress, Adelaide, Australia.
- [2] H. Price, J. Baker, F. Naderi, A Scenario for a Human Mission to Mars Orbit in the 2030s: Thoughts Toward an Executable Program Fitting Together Puzzle Pieces & Building Blocks, Jet Propulsion Laboratory, California Institute of Technology. Presented at the Future In-Space Operations (FISO) Telecon, May, 2015.
- [3] Mars Architecture Steering Group, Human Exploration of Mars Design Reference Architecture 5.0, Technical Report, NASA, 2009.
- [4] D. Bell, R. Cesarone, T. Ely, C. Edwards, S. Townes, MarsNet: A Mars Orbiting Communications & Navigation Satellite Constellation, IEEE Aerospace Conference 2000, March 2000, Big Sky, Montana.
- [5] K.Cheung, C. Lee, A Trilateration Scheme for Relative Positioning, IEEE Aerospace Conference 2017, Big Sky, Montana, March 2017.
- [6] K. Cheung, C. Lee, A Trilateration Scheme for GPS-Style Localization, Interplanetary Network Progress Report, 42-209, May 15, 2017.
- [7] P. Romero, B. Pablos, G. Barderas, "Analysis of Orbit Determination from Earth-Based Tracking for Relay Satellites in a Perturbed Areostationary Orbit," Acta Astronautica 136 (2017) 434-442, April 4, 2017.
- [8] J. Berner, S. Bryant, and P. Kinman, "Range Measurement as Practiced in the Deep Space Network," Proceedings of the IEEE, Vol. 95, No. 11, November 2007